

RPLIDAR A2

低成本 360 度激光扫描测距雷达

型号:A2M4

上海思岚科技有限公司

<u>SL/MTEC</u>

目录1
简介3
套件包含的组件3
RPLIDAR A2 模组4
USB 转接器4
模组连接与使用介绍
设备连接5
USB 适配器驱动程序安装
使用评估软件7
故障排除9
电机调速9
开发参考与 SDK 使用11
RPLIDAR A2 模块引脚规格与定义
RPLIDAR A2 模块引脚规格与定义11 USB 转接器引脚定义12
RPLIDAR A2 模块引脚规格与定义
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12 操作建议 13
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12 操作建议 13 预热与最佳工作时间 13
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12 操作建议 13 预热与最佳工作时间 13 环境温度 13
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12 操作建议 13 预热与最佳工作时间 13 环境温度 13 环境光照 13
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12 操作建议 13 预热与最佳工作时间 13 环境温度 13 环境光照 13
RPLIDAR A2 模块引脚规格与定义 11 USB 转接器引脚定义 12 对 RPLIDAR A2 扫描频率进行控制 12 使用 SDK 进行开发 12 操作建议 13 预热与最佳工作时间 13 环境温度 13 环境光照 13 修订历史 14 附录 15

目录

RPLIDAR A2 开发套装包含了方便用户对 RPLIDAR A2 进行性能评估和早期开发所需的配套工具。用户只需要将 RPLIDAR A2 模组通过 USB 线缆和 USB 转接器与 PC 机连接,即可在配套的评估软件中观测 RPLIDAR 工作时采集得到的环境扫描点云画面或者使用 SDK 进行开发。

套件包含的组件

RPLIDAR A2 开发套装包含了如下组件:

- o RPLIDAR A2 模组(内置 PWM 电机驱动器)
 - RPLIDAR RPLIDAR USB 适配器
- USB 适配器

图表 1-1 RPLIDAR A2 开发套件实物图

RPLIDAR A2 模组

图表 1-2 RPLIDAR A2 模组实物图

RPLIDAR A2 开发套装中包含了标准版本的 RPLIDAR A2 模组(A2M4-R1)。同时,模组内集成了可以使用逻辑电平驱动的电机控制器。开发者可以使用该电机驱动器使用 PWM 信号对电机转速进行控制,而从控制 RPLIDAR 扫描的频率或者在必要时刻关闭电机节能。

关于模组的使用、接口信号定义等请参考后续介绍。

USB 转接器

图表 1-3 RPLIDAR A2 USB 转接器实物图

设备连接

1) 将开发套装中提供的 RPLIDAR A2 模组的连接线与 USB 适配器进行连接。

图表 2-1 连接 RPLIDAR A2 与 USB 转接器图

2) 将 USB 转接器通过 Micro-USB 线缆与 PC 连接。如果 PC 已经启动,在 USB 线缆连接后,可以观测到 USB 转接器指示灯点亮,此时 RPLIDAR A2 模块并未转动。

图表 2-2 连接 USB 转接器与 Micro-USB 实物图

USB 适配器驱动程序安装

USB 适配器采用 CP2102 芯片实现串口(UART)至 USB 信号的转换。因此需要在 PC 系统中安装对应的驱动程序。其驱动程序可以在配套的 SDK 包中找到, 或者从 Silicon Labs 的官方网站中下载:

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

这里以 Windows 系统下为例,演示安装过程。

通过前几步操作将 USB 适配器与 PC 相连后,执行 CP2102 的 Windows 驱动

程序安装文件(CP210x VCP Windows)。请按照操作系统的版本选择执行 32 位版本(x86)或者 64 位版本(x64)的安装程序。

퉬 хб4	2014/2/8 21:01	文件夹	
퉬 x86	2014/2/8 21:01	文件夹	
🕅 💐 CP210xVCPInstaller_x64.exe	2013/10/25 11:39	应用程序	1,026 KB
💐 CP210xVCPInstaller_x86.exe	2013/10/25 11:39	应用程序	901 KB
i dpinst.xml	2013/10/25 11:39	XML 文档	12 KB
🗎 ReleaseNotes.txt	2013/10/25 11:39	文本文档	10 KB
SLAB_License_Agreement_VCP_Win	2013/10/25 11:39	文本文档	9 KB
🥏 slabvcp.cat	2013/10/25 11:39	安全目录	12 KB
🖉 slabvcp.inf	2013/10/25 11:39	安装信息	5 KB

图表 2-3 选择 USB 转接器驱动程序进行安装

图表 2-4 USB 转接器驱动程序开始安装界面

按照系统提示完成安装过程后,可以在[控制面板]->[设备和打印机]窗口中 看到识别到的 USB 适配器所对应的串口名。(下图为 COM65)

)) - 👼 • E	的面板 , 硬件和声	音 , 设备和打印机	
添加设备 添加	打印机		
> 打印机和传真(5)		
》设备 (9)			
• 未指定 (2)			
Generic USB Hub	Silicon Labs CP210x USB to UART Bridge (COM65)		

图表 2-5 识别到的 USB 转接器所对应的串口名

使用评估软件

SLAMTEC 提供了 RPLIDAR 扫描画面的可视化软件 frame_grabber。通过该软件客户可以直观的观测到 RPLIDAR 实时的测距扫描结果,并且可以保存测距结果至外部文件供进一步分析。同时配套的 SDK 中包含了该工具的源代码, 方便用户参考开发。

目前该软件需要运行在 Windows 平台下,对于 Linux 和 MacOS 用户,可以使用 SDK 中提供的其他示例程序。

请确保 RPLIDAR A2 模组已经通过 USB 转接器连接至 PC,且已经安装了前文 所述的驱动程序。运行演示软件:framegrabber.exe,选择 USB 转接器对应 的串口号:

Select Serial Port		×
COM65		•
	ОК	Cancel

图表 2-6 USB 选择转接器所对应的串口号

如果连接正常,则将看到如下画面:

图表 2-7 演示软件初始化界面

其中标题栏显示了目前样机的固件/硬件版本和序列号信息。所有对 RPLIDAR 可进行的操作均已在工具栏列出:

按钮	操作	说明
۷	开始扫描	扫描数据将在测距核心开始转动并稳定后显 示
	停止扫描	测距核心将进入节电空闲模式
<u>.</u>	数据采样保存	采集当前测距结果到外部文本文件
Q	重启 RPLIDAR	命令测距核心重启,用于清除内部错误
0	调节电机转速	调节电机转速至实际需要的旋转速度状态

图表 2-8 RPLIDAR 图形演示软件操作按钮说明

点击扫描采集按钮[●],则可以在演示工具中看到当前的扫描图,默认电机旋转参数设定在 10hz 左右:

<u>SL</u>\MTEC

图表 2-9 RPLIDAR 图形演示软件显示的扫描轮廓

可以使用鼠标滚轮对扫描画面进行缩放。将鼠标移至任意采样点,可以在画面红字中看到该点的距离值以及相对于 RPLIDAR 朝向的角度。

测距核心的扫描速度(转速)可以通过画面最后的文字读出。

故障排除

在内部测距系统工作异常或激光器发射功耗异常时,测距核心将自动进入保护状态。演示工具以及 SDK 接口可以获得当前测距核心的工作状态。如果发生故障,则可发送重启命令 Ӯ 要求测距核心重启。

电机调速

在实际运行中,不同的用户需要不同的电机旋转速度,可以通过^O按钮来实现。

点击此按钮后,会弹出速度调节对话框,用户可以直接填入数字,然后点击 Set,电机将自动到达设定的转速;用户也可以直接拖动进度条至设定的转速。 Framegrabber 主显示对话框上会实时显示当前的转速。

图表 2-10 RPLIDAR 图形演示软件显示的电机调速对话框

开发参考与 SDK 使用

RPLIDAR A2 模块引脚规格与定义

开发套装中 RPLIDAR A2 模块连线使用 XH2.54-5P 规范的插头。用户将其插 在符合 XH2.54-5P 规范的插座上。其信号定义如下:

图表 3-1 RPLIDAR A2 模块引脚示意图

色彩	信号名	类型	描述	最小值	典型值	最大值
红	VCC	供电	总供电	4.9V	5V	5.5V
黄	TX	输出	测距核心串口输出	0V	3.3V	3.5V
绿	RX	输入	测距核心串口输入	0V	3.3V	3.5V
黑	GND	供电	地线	0V	0V	0V
蓝	MOTOC TL	输入 (下 拉)	扫 描 电 机 使 能 /PWM 控制信号(高 电平有效)	0V	3.3V	5V

图表 3-2 RPLIDAR A2 模块引脚规格与定义

RPLIDAR A2 模块使用单独的 5V DC 电源同时为测距系统和电机系统供电。不需要额外其他供电电源。

RPLIDAR A2 内部带有具有可调速功能的电机驱动器,可通过接口中的

11 / 15

MOTOCTL 信号对旋转电机的启动、停止以及旋转速度进行控制。

o 参考系统设计

图表 3-3 RPLIDAR A2 模块引脚参考系统设计

USB 转接器引脚定义

USB 转接器同样采用 XH2.54-5P 规范的插座,可以直接与 RPLDIAR A2 的连接线相连。其引脚定义与 RPLIDAR A2 的本体引脚定义相同。

对 RPLIDAR A2 扫描频率进行控制

使用 RPLIDAR A2 的 USB 转接器可以直接调节电机速度控制信号 MOTOCTL, 用户可以直接调用 SDK 中相关函数进行调节电机转速,从而修改雷达扫描频 率。

如果不使用 USB 转接器,用户需要自行设定 MOTOCTL 的 PWM 占空比来进行调速。请注意 PWM 的频率为 20kHz,更详细的参数指标请参考 Datasheet 文档。

请参考 RPLIDAR 协议规范与应用文档了解详情,或者参考 SDK 中关于获取 RPLIDAR 扫描频率的代码。

使用 SDK 进行开发

SLAMTEC 提供了对 RPLIDAR 进行开发的配套 SDK。该 SDK 支持 Windows、 Linux 操作系统,并且用户也可以通过 SLAMTEC 提供的 SDK 源代码快速将 SDK 移植到其他的操作系统或者嵌入式系统当中。请参考 SDK 文档了解详情。

预热与最佳工作时间

由于测距核心在工作中将产生热量,建议在 RPLIDAR 工作(开启扫描模式、 扫描电机开始运转)2分钟后使用。此时测距精度将达到最佳水平。

环境温度

当环境温度与常温差距过大将影响测距系统的精度,并可能对扫描系统的结构产生损害。请避免在高温(>40摄氏度)以及低温(<-10摄氏度)的条件中使用。

环境光照

RPLIDAR 的理想工作环境为室内,室内环境光照(包含无光照)不会对 RPLIDAR 工作产生影响。但请避免使用强光源(如大功率激光器)直接照射 RPLIDAR 的视觉系统。

如果需要在室外使用,请避免 RPLIDAR 的视觉系统直接面对太阳照射,这将 这可能导致视觉系统的感光芯片出现永久性损伤,从而使测距失效。

RPLIDAR 标准版本在室外强烈太阳光反射条件下的测距范围将缩短。

修订历史

<u>SL</u>\MTEC

日期	版本	描述
2016-04-06	0.1	初始版本 A2M4
2016-08-17	1.0	更新 USB 转接器图片
2016-10-28	1.1	更新 USB 适配器推荐驱动地址

图表索引

图表 1-1 RPLIDAR A2 开发套件实物图	3
图表 1-2 RPLIDAR A2 模组实物图	4
图表 1-3 RPLIDAR A2 USB 转接器实物图	4
图表 2-1 连接 RPLIDAR A2 与 USB 转接器图	5
图表 2-2 连接 USB 转接器与 MICRO-USB 实物图	5
图表 2-3 选择 USB 转接器驱动程序进行安装	6
图表 2-4 USB 转接器驱动程序开始安装界面	6
图表 2-5 识别到的 USB 转接器所对应的串口名	7
图表 2-6 USB 选择转接器所对应的串口号	7
图表 2-7 演示软件初始化界面	8
图表 2-8 RPLIDAR 图形演示软件操作按钮说明	8
图表 2-9 RPLIDAR 图形演示软件显示的扫描轮廓	9
图表 2-10 RPLIDAR 图形演示软件显示的电机调速对话框	. 10
图表 3-1 RPLIDAR A2 模块引脚示意图	. 11
图表 3-2 RPLIDAR A2 模块引脚规格与定义	. 11
图表 3-3 RPLIDAR A2 模块引脚参考系统设计	. 12